
 

 

2.3 Implementing requirements using machine learning (ML) 

Practical guidance – cross-domain 
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As with any engineering artefact, assurance can only be provided by understanding the 
complex, iterative process employed to produce and use ML components, i.e. the machine 
learning lifecycle as shown in Figure 1. The machine learning lifecycle consists of four stages. 
The first three stages—Data Management, Model Learning, and Model Verification—
comprise the activities by which machine-learnt models are produced. Accordingly, we use 
the term machine learning workflow to refer to these stages taken together. The fourth 
stage, Model Deployment, comprises the activities concerned with the deployment of ML 
models within an operational system, alongside components obtained using traditional 
software and system engineering methods. Brief descriptions of each of the stages are 
provided below, with more detailed guidance on each step provide in the relevant section of 
the BoK. 

 

Figure 1 – The Machine Learning Lifecycle 

Like traditional system development, the ML process is underpinned by a set of system-level 
requirements, from which the requirements and operating constraints for the ML models 
are derived. As an example, the requirements for a ML model for the classification of British 
road signs can be derived from the high-level requirements for a self-driving car intended to 



Body of Knowledge 2.3 – cross-domain practical guidance 
Copyright © 2019 University of York 

 

be used in the UK. However, unlike traditional development processes, the development of 
ML models involves the acquisition of data sets, and experimentation [1, 2], i.e. the 
manipulation of these data sets and the use of ML training techniques to produce models of 
the data that optimise error functions derived from requirements. This experimentation 
yields a processing pipeline capable of taking data as input and of producing ML models as 
output which, when integrated into the system and applied to data unseen during training, 
achieve their requirements in the deployed context. 

Data Management 

Data is at the core of any application of machine learning. As such, the ML lifecycle starts 
with a Data Management stage. This stage is responsible for the acquisition of the data 
underpinning the development of machine learnt models that can then be used “to predict 
future data, or to perform other kinds of decision making under uncertainty” [3]. This stage 
comprises four key activities, and produces the training data set and verification data set 
used for the training and verification of the ML models in later stages of the ML lifecycle, 
respectively. The first data management activity, collection [4, 5], is concerned with 
gathering data samples through observing and measuring the real-world (or a 
representation of the real-world) system, process or phenomenon for which an ML model 
needs to be built. When data samples are unavailable for certain scenarios, or their 
collection would be too costly, time consuming or dangerous, augmentation methods [6, 7] 
are used to add further data samples to the collected data sets. Additionally, the data may 
have limitations, and therefore preprocessing [8, 9] may be required to produce consistent 
data sets for training and verification purposes. Preprocessing may also seek to reduce the 
complexity of collected data or to engineer features to aid in training [10, 11]. Furthermore, 
preprocessing may be required to label the data samples when they are used in supervised 
ML tasks [4, 12, 3]. The need for additional data collection, augmentation and preprocessing 
is established through the analysis of the data [13]. 

More detailed guidance on data management is provided in section 2.3.1 of the BoK. 

Model Learning 

In the Model Learning stage of the machine learning lifecycle, the ML engineer typically 
starts by selecting the type of model to be produced. This model selection is undertaken 
with reference to the problem type (e.g. classification or regression), the volume and 
structure of the training data [14, 15], and often in light of personal experience. A loss 
function is then constructed as a measure of training error. The aim of the training activity is 
to produce an ML model that minimises this error. This requires the development of a 
suitable data use strategy, so as to determine how much of the training data set* should be 
held for model validation**, and whether all the other data samples should be used 
together for training or “minibatch methods” that use subsets of data samples over 
successive training cycles should be employed [12]. The ML engineer is also responsible for 
hyperparameter selection, i.e. for the choosing the parameters of the training algorithm. 
Hyperparameters control key ML model characteristics such as overfitting, underfitting and 
model complexity. Finally, when models or partial models that have proved successful 
within a related context are available, transfer learning enables their integration within the 
new model architecture or their use as a starting point for training [16, 17, 18]. When the 
resulting ML model achieves satisfactory levels of performance, the next stage of the ML 
workflow can commence. Otherwise, the process needs to return to the Data Management 
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stage, where additional data are collected, augmented, preprocessed and analysed in order 
to improve the training further. 

More detailed guidance on model learning is provided in section 2.3.2 of the BoK. 

• * the training data set is the data that is produced independently of the verification 
data for use as part of the model learning process 

• ** model validation represents the frequent evaluation of the ML model during 
training, and is carried out by the development team in order to calibrate the 
training algorithm. This differs essentially from what validation means in software 
engineering (i.e. an independent assessment performed to establish whether a 
system satisfies the needs of its intended users) 

Model Verification 

The third stage of the ML lifecycle is Model Verification. The central challenge of this stage is 
to ensure that the trained model performs well on new, previously unseen inputs (this is 
known as generalization) [4, 12, 3]. As such, the stage comprises activities that provide 
evidence of the model’s ability to generalise to data not seen during the model learning 
stage. A test-based verification activity assesses the performance of the learnt model 
against the verification data set that the Data Management stage has produced 
independently from the training data set. This data set will have commonalities with the 
training data, but it may also include elements that have been deliberately chosen to 
demonstrate a verification aim, which it would be inappropriate to include in the training 
data. When the data samples from this set are presented to the model, a generalization 
error is computed [19, 20]. If this error violates performance criteria established by a 
requirement encoding activity, then the process needs to return to either the Data 
Management stage or the Model Learning stage of the ML lifecycle. Additionally, a formal 
verification activity [21] may be used to verify whether the model complies with a set of 
formal properties that encode key requirements for the ML component (e.g. requirements 
associated with model robustness). Formal verification allows for important properties to be 
rigorously established before the ML model is deemed suitable for integration into the 
safety-critical system. As for failed testing-based verification, further Data Management 
and/or Model Learning activities are necessary when these properties do not hold. The 
precise activities required from these earlier stages of the ML workflow are determined by 
the verification result, which summarises the outcome of all verification activities. 

More detailed guidance on model verification is provided in section 2.3.3 of the BoK. 

Model Deployment 

Assuming that the verification result contains all the required assurance evidence, a system 
that uses the now verified model is assembled in the Model Deployment stage of the ML 
lifecycle. This stage comprises activities concerned with the integration of verified ML 
model(s) with system components developed and verified using traditional software and 
systems engineering methods, with the monitoring of its operation, and with its updating 
through offline maintenance or online learning. How the model is deployed within the 
system is a key consideration for an assurance argument. 
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Model Deployment Activities 

1. Integration - This activity involves integrating the ML model into the wider system 
architecture. This requires linking system sensors, together with any necessary 
processing, to the model inputs. Likewise, model outputs need to be provided to the 
wider system so that they can be acted upon. A significant integration-related 
consideration is protecting the wider system against the effects of the occasional 
incorrect output from the ML model. 

2. Monitoring- This activity is concerned with the different types of monitoring that are 
appropriate to the deployment of an ML-developed model within a safety-critical 
system. These can be organised into four categories: 

a. Monitoring the inputs provided to the model. This could, for example, involve 
checking whether inputs are within acceptable bounds before they are 
provided to the ML model. 

b. Monitoring the environment in which the system is used. This type of 
monitoring can be used, for example, to check that the observed 
environment matches any assumptions made during the ML workflow [22]. 

c. Monitoring the internals of the model. This is useful, for example, to protect 
against the effects of single event upsets, where environmental effects result 
in a change of state within a micro-electronic device [23]. 

d. Monitoring the output of the model. This replicates a traditional system 
safety approach in which a high-integrity monitor is used alongside a lower-
integrity item. 

3. Updating - Software is expected to change during a system’s life. Similarly, deployed 
ML models are expected to be updated during their lifetime; some applications may 
involve weekly, or even nightly, updates. This activity relates to managing and 
implementing these updates. Conceptually it also includes, as a special case, updates 
that occur as part of online learning (e.g. within the implementation of an RL-based 
model). However, since they are intimately linked to the model, these considerations 
are best addressed within the Model Learning stage. 

Desired Assurance Properties of a deployed ML model 

From an assurance perspective, the deployed ML model should exhibit the following key 
properties: 

1. Fit-for-Purpose - This property recognises that the ML model needs to be fit for the 
intended purpose within the specific system context. The intended purpose is 
defined by the requirements for the ML model derived from requirements at the 
system-level. In particular, it is possible for exactly the same model to be fit-for-
purpose within one system, but not fit-for-purpose within another. Essentially, this 
property adopts a model-centric focus. 

2. Tolerated - This property acknowledges that it is typically unreasonable to expect ML 
models to achieve the same levels of reliability as traditional (hardware or software) 
components. Consequently, if ML models are to be used within safety-critical 
systems, the wider system must be able to tolerate the occasional incorrect output 
from the ML model. 

3. Adaptable - This property is concerned with the ease with which changes can be 
made to the deployed ML model. As such, it recognises the inevitability of change 
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within a software system; consequently, it is closely linked to the ‘Updating’ activity 
described above. 

Methods for Model Deployment 

Table 1 provides a summary of the methods that can be applied during each Model 
Deployment activity in order to achieve the desired assurance properties (desiderata). 
Further details on the methods listed in Table 1 are available in [24]. 

 

Table 1 – Assurance methods for model deployment 

Summary of Approach 

Implementing an ML component for use in a RAS requires explicit consideration of the 
assurance of each of the following stages of the ML lifecycle:  

1. Data Management – see further guidance in section 2.3.1 
2. Model Learning - see further guidance in section 2.3.2 
3. Model Verification - see further guidance in section 2.3.3 
4. Model Deployment 
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